出处:
正常情况下,每个子线程完成各自的任务就可以结束了。不过有的时候,我们希望多个线程协同工作来完成某个任务,这时就涉及到了线程间通信了。
本文涉及到的知识点:thread.join(), object.wait(), object.notify(), CountdownLatch, CyclicBarrier, FutureTask, Callable 等。
下面我从几个例子作为切入点来讲解下 Java 里有哪些方法来实现线程间通信。
- 如何让两个线程依次执行?
- 那如何让 两个线程按照指定方式有序交叉运行呢?
- 四个线程 A B C D,其中 D 要等到 A B C 全执行完毕后才执行,而且 A B C 是同步运行的
- 三个运动员各自准备,等到三个人都准备好后,再一起跑
- 子线程完成某件任务后,把得到的结果回传给主线程
先给出关键词的结论:
wait()、notify()、notifyAll() 这三个方法都是java.lang.Object
的方法。 协调多个线程对共享数据的存取,所以必须在synchronized语句块内使用
sleep()、join()、yield() Thread类的方法
1. sleep() 使线程休眠一段时间,一段时间结束后,线程进入可执行状态,但并不是立即执行,只是在被排程器调用的时候才执行。在休眠期间,并不释放所持有的“锁”;
2. wait() wait 与 notify/notifyAll 方法必须在同步代码块中使用,即要先对调用对象加锁,当线程执行wait()时,会把当前的锁释放,然后让出CPU,进入等待状态。 使线程休眠一段时间,若设置参数,时间到时,线程就自动进入可执行状态。若没有,则需要notify()、notifyAll()方法去调用。
3. yield() 使线程放弃执行的权利,进入可执行状态,也就意味着线程在yield()方法后,有可能又执行。使用yield()方法,线程并不释放自己锁持有的“锁”。
4:join() Thread类中的join()的主要作用就是同步,它可以使得线程之间的并行执行变为串行执行
。join()方法使调用该方法的线程在此之前执行完毕,也就是等待 该方法的线程执行完毕后 再往下继续执行
5: notify/notifyAll 当执行notify/notifyAll方法时,会唤醒一个处于等待该 对象锁 的线程,然后继续往下执行,直到执行完退出对象锁锁住的区域(synchronized修饰的代码块)后再释放锁。
举一个wait()和notify()交互的实例:
public class SynDemo { private Object lock; public SynDemo(Object lock) { this.lock = lock; } public void test1(){ synchronized (lock){ System.out.println("test1 is running1"); try { Thread.sleep(2000); lock.wait(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("test1 is running2"); } } public void test2() { synchronized (lock){ System.out.println("test2 is running1"); try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } lock.notify(); System.out.println("test2 is running2"); } }}
调用:
Object lock = new Object(); Thread third = new Thread(()->{ SynDemo demo = new SynDemo(lock); demo.test1(); }); third.start(); Thread five = new Thread(()->{ SynDemo demo = new SynDemo(lock); demo.test2(); }); five.start(); console打印结果: test1 is running1 test2 is running1 test2 is running2 test1 is running2
分析:
回到之前提到的问题: 如何让两个线程依次执行?
假设有两个线程,一个是线程 A,另一个是线程 B,两个线程分别依次打印 1-3 三个数字即可。我们来看下代码:
private static void demo1() { Thread A = new Thread(new Runnable() { @Override public void run() { printNumber("A"); } }); Thread B = new Thread(new Runnable() { @Override public void run() { printNumber("B"); } }); A.start(); B.start();}
其中的 printNumber(String) 实现如下,用来依次打印 1, 2, 3 三个数字:
private static void printNumber(String threadName) { int i=0; while (i++ < 3) { try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(threadName + " print:" + i); }}
这时我们console得到的结果是:
B print:
1
A print:
1
B print:
2
A print:
2
B print:
3
A print:
3
可以看到 A 和 B 是同时打印的。那么,如果我们希望 B 在 A 全部打印 完后再开始打印呢?我们可以利用 thread.join() 方法,代码如下:
private static void demo2() { Thread A = new Thread(new Runnable() { @Override public void run() { printNumber("A"); } }); Thread B = new Thread(new Runnable() { @Override public void run() { System.out.println("B 开始等待 A"); try { A.join(); } catch (InterruptedException e) { e.printStackTrace(); } printNumber("B"); } }); B.start(); A.start();}
得到的结果如下:
B 开始等待 A
A print:
1
A print:
2
A print:
3
B print:
1
B print:
2
B print:
3
所以我们能看到 A.join() 方法会让 B 一直等待直到 A 运行完毕。
实现目标:那如何让两个线程按照指定方式有序交叉运行呢?
还是上面那个例子,我现在希望 A 在打印完 1 后,再让 B 打印 1, 2, 3,最后再回到 A 继续打印 2, 3。这种需求下,显然 Thread.join() 已经不能满足了。我们需要更细粒度的锁来控制执行顺序。
这里,我们可以利用 object.wait() 和 object.notify() 两个方法来实现。代码如下:
private static void demo3() { Object lock = new Object(); Thread A = new Thread(new Runnable() { @Override public void run() { synchronized (lock) { System.out.println("A 1"); try { lock.wait(); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println("A 2"); System.out.println("A 3"); } } }); Thread B = new Thread(new Runnable() { @Override public void run() { synchronized (lock) { System.out.println("B 1"); System.out.println("B 2"); System.out.println("B 3"); lock.notify(); } } }); A.start(); B.start();}
打印结果如下:
A
1
A waiting…
B
1
B
2
B
3
A
2
A
3
正是我们要的结果。
那么,这个过程发生了什么呢?
- 首先创建一个 A 和 B 共享的对象锁 lock = new Object();
- 当 A 得到锁后,先打印 1,然后调用 lock.wait() 方法,交出锁的控制权,进入 wait 状态;
- 对 B 而言,由于 A 最开始得到了锁,导致 B 无法执行;直到 A 调用 lock.wait() 释放控制权后, B 才得到了锁;
- B 在得到锁后打印 1, 2, 3;然后调用 lock.notify() 方法,唤醒正在 wait 的 A;
- A 被唤醒后,继续打印剩下的 2,3。
实现目标:四个线程 A B C D,其中 D 要等到 A B C 全执行完毕后才执行,而且 A B C 是同步运行的.
最开始我们介绍了 thread.join(),可以让一个线程等另一个线程运行完毕后再继续执行,那我们可以在 D 线程里依次 join A B C,不过这也就使得 A B C 必须依次执行,而我们要的是这三者能同步运行。
或者说,我们希望达到的目的是:A B C 三个线程同时运行,各自独立运行完后通知 D;对 D 而言,只要 A B C 都运行完了,D 再开始运行。针对这种情况,我们可以利用 CountdownLatch 来实现这类通信方式。它的基本用法是:
- 创建一个计数器,设置初始值,CountdownLatch countDownLatch = new CountDownLatch(2);
- 在 等待线程 里调用 countDownLatch.await() 方法,进入等待状态,直到计数值变成 0;
- 在 其他线程 里,调用 countDownLatch.countDown() 方法,该方法会将计数值减小 1;
- 当 其他线程 的 countDown() 方法把计数值变成 0 时,等待线程 里的 countDownLatch.await() 立即退出,继续执行下面的代码。
实现代码如下:
private static void runDAfterABC() { int worker = 3; CountDownLatch countDownLatch = new CountDownLatch(worker); new Thread(new Runnable() { @Override public void run() { System.out.println("D is waiting for other three threads"); try { countDownLatch.await(); System.out.println("All done, D starts working"); } catch (InterruptedException e) { e.printStackTrace(); } } }).start(); for (char threadName='A'; threadName <= 'C'; threadName++) { final String tN = String.valueOf(threadName); new Thread(new Runnable() { @Override public void run() { System.out.println(tN + "is working"); try { Thread.sleep(100); } catch (Exception e) { e.printStackTrace(); } System.out.println(tN + "finished"); countDownLatch.countDown(); } }).start(); }}
下面是运行结果:
D is waiting
for
other three threads
A is working
B is working
C is working
A finished
C finished
B finished
All done, D starts working
其实简单点来说,CountDownLatch 就是一个倒计数器,我们把初始计数值设置为3,当 D 运行时,先调用 countDownLatch.await() 检查计数器值是否为 0,若不为 0 则保持等待状态;当A B C 各自运行完后都会利用countDownLatch.countDown(),将倒计数器减 1,当三个都运行完后,计数器被减至 0;此时立即触发 D 的 await() 运行结束,继续向下执行。
因此,CountDownLatch 适用于一个线程去等待多个线程的情况。
实现目标:三个运动员各自准备,等到三个人都准备好后,再一起跑
上面是一个形象的比喻,针对 线程 A B C 各自开始准备,直到三者都准备完毕,然后再同时运行 。也就是要实现一种 线程之间互相等待 的效果,那应该怎么来实现呢?
上面的 CountDownLatch 可以用来倒计数,但当计数完毕,只有一个线程的 await() 会得到响应,无法让多个线程同时触发。
为了实现线程间互相等待这种需求,我们可以利用 CyclicBarrier 数据结构,它的基本用法是:
- 先创建一个公共 CyclicBarrier 对象,设置 同时等待 的线程数,CyclicBarrier cyclicBarrier = new CyclicBarrier(3);
- 这些线程同时开始自己做准备,自身准备完毕后,需要等待别人准备完毕,这时调用 cyclicBarrier.await(); 即可开始等待别人;
- 当指定的 同时等待 的线程数都调用了 cyclicBarrier.await();时,意味着这些线程都准备完毕好,然后这些线程才 同时继续执行。
实现代码如下,设想有三个跑步运动员,各自准备好后等待其他人,全部准备好后才开始跑:
private static void runABCWhenAllReady() { int runner = 3; CyclicBarrier cyclicBarrier = new CyclicBarrier(runner); final Random random = new Random(); for (char runnerName='A'; runnerName <= 'C'; runnerName++) { final String rN = String.valueOf(runnerName); new Thread(new Runnable() { @Override public void run() { long prepareTime = random.nextInt(10000) + 100; System.out.println(rN + "is preparing for time:" + prepareTime); try { Thread.sleep(prepareTime); } catch (Exception e) { e.printStackTrace(); } try { System.out.println(rN + "is prepared, waiting for others"); cyclicBarrier.await(); // 当前运动员准备完毕,等待别人准备好 } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e) { e.printStackTrace(); } System.out.println(rN + "starts running"); // 所有运动员都准备好了,一起开始跑 } }).start(); }}
打印的结果如下:
A is preparing
for
time:
4131
B is preparing
for
time:
6349
C is preparing
for
time:
8206
A is prepared, waiting
for
others
B is prepared, waiting
for
others
C is prepared, waiting
for
others
C starts running
A starts running
B starts running
实现目标:子线程完成某件任务后,把得到的结果回传给主线程
实际的开发中,我们经常要创建子线程来做一些耗时任务,然后把任务执行结果回传给主线程使用,这种情况在 Java 里要如何实现呢?
回顾线程的创建,我们一般会把 Runnable 对象传给 Thread 去执行。Runnable定义如下:
public interface Runnable { public abstract void run();}
可以看到 run() 在执行完后不会返回任何结果。那如果希望返回结果呢?这里可以利用另一个类似的接口类 Callable:
@FunctionalInterfacepublic interface Callable{ /** * Computes a result, or throws an exception if unable to do so. * * @return computed result * @throws Exception if unable to compute a result */ V call() throws Exception;}
可以看出 Callable 最大区别就是返回范型 V 结果。
那么下一个问题就是,如何把子线程的结果回传回来呢?在 Java 里,有一个类是配合 Callable 使用的:FutureTask,不过注意,它获取结果的 get 方法会阻塞主线程。
举例,我们想让子线程去计算从 1 加到 100,并把算出的结果返回到主线程。
private static void doTaskWithResultInWorker() { Callablecallable = new Callable () { @Override public Integer call() throws Exception { System.out.println("Task starts"); Thread.sleep(1000); int result = 0; for (int i=0; i<=100; i++) { result += i; } System.out.println("Task finished and return result"); return result; } }; FutureTask futureTask = new FutureTask<>(callable); new Thread(futureTask).start(); try { System.out.println("Before futureTask.get()"); System.out.println("Result:" + futureTask.get()); System.out.println("After futureTask.get()"); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); }}
打印结果如下:
Before futureTask.get()
Task starts
Task finished and
return
result
Result:
5050
After futureTask.get()
可以看到,主线程调用 futureTask.get() 方法时阻塞主线程;然后 Callable 内部开始执行,并返回运算结果;此时 futureTask.get() 得到结果,主线程恢复运行。
这里我们可以学到,通过 FutureTask 和 Callable 可以直接在主线程获得子线程的运算结果,只不过需要阻塞主线程。当然,如果不希望阻塞主线程,可以考虑利用 ExecutorService,把 FutureTask 放到线程池去管理执行。